

Contents

Fo	reword	page vii
Acknowledgements		
List of tables		
	st of contributors	xi
1	Techniques in cell biology B. King	1
	1.1 Introduction	. 2
	1.2 Light microscopy	2
	1.3 Contrast techniques	4
	1.4 Electron microscopy	9
	1.5 Cell and tissue separation techniques	12
	1.6 Chromatography	15
	1.7 Electrophoresis	19
	1.8 Radioactive techniques	20
	1.9 X-ray diffraction	27
2	Evolution of cells M. A. Sleigh	31
	2.1 The essential chracteristics of cells	32
	2.2 Origin and evolution of early cells	35
	2.3 Prokaryotes: archeabacteria and eubacteria	39
	2.4 Evolution of energy metabolism among prokaryotes	40
	2.5 Cellular features of prokaryotes	47
	2.6 Cell organisation in eukaryotes	51
	2.7 The origin of eukaryotes	55
	2.8 Symbiotic organelles in eukaryotes	56
	2.9 Some variants of cellular features in eukaryotes	58
	2.10 Cellular evolution amongst eukaryotes	65
	References and further reading	68
3	Enzymes C. J. Wynn	71
	3.1 Role of enzymes	72
	3.2 Levels of protein structure	73
	3.3 Enzyme specificity	81
	3.4 Mechanism of enzyme action	89
	3.5 Control of enzyme action 3.6 Trends in research	100
		107
	References and further reading	110

4 Membranes G. E. Jones Membrane structure 4.2 Membrane transport 4.3 Call junctions 4.4 Cellular recognition and adhesion 4.5 Trends in research References and further reading Molecular basis of heredity M. R. Hartley 160 5.1 | Molecular biology 5.2 The structure of nucleic acids 56 5.3 Replication of DNA 5.4 Complexity and organisation of DNA 5.5 Structure of the nucleus 5.6 Gene cloning 5.7 DNA sequencing 5.8 Trends in research 186 References and further reading 181 The synthesis of RNA and protein M. R. Hartley 183 Introduction 184 6,1 195 The different classes of cellular RNA 뗈 The synthesis of RNA 6,3 例 6.4 Transcriptional control in prokaryotes 195 Post-transcriptional modification of RNA 6,5 198 Reverse transcription 6,6 199 6.7 Cenetic code 6.8 The mechanism of protein synthesis 203 211 6.9 Trends in research 6.10 Applications of recombinant DNA technology 234 References and further reading 200 Cellular motility G. E. Jones 223 Microtubules, microfilaments and intermediate filaments 224 Microfilament-based motility 224 7.3 Microfilaments in non-muscle cells 234 7.4 Microtubule-based motility 242 7.5 Plagella and cilia 247 7.6 Bacterial flagella 250 7.7 Trends in research 251 References and further reading 255 Clossary 256 Index

258

List of tables

1.1	Sedimentation coefficients	13
1.2	Biologically useful isotopes	20
2.1	Standard redox potentials of some redox pairs important	
	in cell biochemistry	41
5.1	Growth of mutant strains of Neurospora	145
5.2	Some of the enzymes involved in DNA replication in	
	Escherichia coli	158
5.3	C values (haploid DNA content in base pairs) of various groups	
0.0	of organisms	162
5.4	Some properties of bovine histones	164
5.5	Sources and cleavage/recognition sequences of some commonly	
0.0	used restriction endonucleases	172
6.1	Properties of eukaryotic RNA polymerases	193
6.2	The genetic code	202
6.3	Allowed base-pairing combinations according to the wobble	
0.5	hypothesis	203
CA	Some common genetic diseases	218
0.4	Some common generic diseases	

List of contributors

- M. R. Hartley, Department of Biology, University of Warwick, Coventry, CV4 7AL, UK
- G. E. Jones, Department of Biology, Queen Elizabeth and Kings College, London, W8 7AH, UK
- B. King, Biology Department, Stowe School, Buckingham, MK18 5EH, UK
- M. A. Sleigh, Department of Biology, University of Southampton, Southampton, SO9 3TU, UK
- C. H. Wynn, Department of Biochemistry, University of Manchester, Manchester, M13 9PL, UK